A
A _ADLINK

Edge Vision Analytics SDK
Programming Guide

Manual Rev.: 1.1
Revision Date: April 12, 2021
Part Number: 50M-00009-1010

LEADING EDGE COMPUTING

A

= ADLINK

Preface

Copyright

Copyright © 2021 ADLINK Technology, Inc. This document contains proprietary information protected by copyright.
All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in

any form without prior written permission of the manufacturer.

Disclaimer

The information in this document is subject to change without prior notice in order to improve reliability, design, and
function and does not represent a commitment on the part of the manufacturer. In no event will the manufacturer
be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use

the product or documentation, even if advised of the possibility of such damages.

Trademarks

Product names mentioned herein are used for identification purposes only and may be trademarks and/or

registered trademarks of their respective companies.

Revision History

Revision | Description Date
1.0 Initial release 2020-09-30
1.1 Release for EVA SDK R3 2021-04-12

Preface

Edge Vision Analytics SDK Programming Guide |

Table of Contents

P B AL - i
1 T e Lo Yo [¥ Yo {10 o PP PPPPPRPPPPPPPP 1
2 Developing Elements/Plugins With C.........cooiiiiiiiiii e 3
2.1 ClasS DECIATALION.ueiiiieeeiiiiittee ettt e e e e e e e e e e e abbeeees 3
2.2 Constructors and DECONSITUCTONSuuiiiiaaeeeae e e e e e e aaaaaens 4
2.3 L@ o= Tox 11T 03 Y/ o] [4
2.4 Class IMPIEMENTALION ... 5
2.5 SinK and Source Pad ASSOCIALION.........uuuiiiiiieieeee e e e e e e e e e e eaaeeas 6
2.6 Overriding GstVideoFilter transform_frame_ip ... 7
2.7 e (W o T T =T o 1Y 1 = (o o PP 8
3 Developing Elements/Plugins with Python ... 9
3.1 T a] oo a1 o TN [o o 11] P 9
3.2 ClasS DECIAIALION.uuuueiieiiiiiii s a e e s e e e s e a e e e e e e e e e naaa e e aaeeeas 9
3.3 Class IMPIEMENTALION ... 9
3.4 Register Python EIEMENt............oooviiiiiiiiiiiiee ettt 11
3.5 Install @ PYthon EIEMENT.........oeiiiiiii e 11
4 Python Sample to Interpret Inference Result as a Yolov3 Box Detection 13
4.1 PYthon Sample COE...........uuiiiiiiiei e 13
4.2 Draw BOXES iN AN IMAQJE.......ccivieeiiiiii e e e e e e et s e e e e e e e et s e e e e e e e e anaan e e e s 15
4.3 Custom Translatation Of COUEcuiiiiiiiiiiiiiiiiee e 15
4.4 Python Application EXAMPIEcoooiiiiiiiiccee e 15
5 How to Use ADLINK Metadata...........ccceeuiiiiiiiiiiiiiiiciiciici e 17
51 ADLINK Metadata ArChiteCtUIe...........covvviviiiiiiiiie e 17
5.2 UsiNg ADLINK Metadatal..........uuuiiiiiiiiiieiiiii i et e e e e ee e e e e e e e e anian s e e e e eeenes 20
6 Integrating the GStreamer PIUGIN ... 21
6.1 1Y =1 1 (oo It TSROV OPRPROPRPPIS 21
6.2 IMEENOA 2.t 23
6.3 Y21 0T 1Y, =1 o o PP 25
SaAfelY INSTIUCTIONS ... e e e e e e e e et e e e e e e e eeeesannaeeaaeeeeeeenes 29
(7= n] Yo TRST=T VAT ol = PSSR 30

Preface iii

A
= ADLINK

This page intentionally left blank.

Preface

Edge Vision Analytics SDK Programming Guide |

1 Introduction

The purpose of this programming guide is to demonstrate the concepts of the GStreamer element/plugin/application
program architecture in order to help users develop their own customized products with the ADLINK Edge Vision
Analytics SDK. GStreamer is built on top of the GObject (for object-orientation) and Glib (for common algorithms)
libraries, so some prior knowledge of these object-oriented concepts will be helpful before continuing with this guide.

This programming guide covers the following topics.

e Developing Elements/Plugins with C illustrates the architecture of the GObject-style objective oriented
program to explain the overall view of the element and plugin in C.

o Developing Elements/Plugins with Python illustrates the architecture of the GObject-style objective oriented
program to explain the overall view of the element and plugin in Python.

e How to Use ADLINK Metadata illustrates how to retrieve and save the ADLINK defined metadata structure
within the GStreamer buffer.

e Integrating the GStreamer Plugin includes examples of how to integrate code with Gstreamer to give a
clearer understanding of how GStreamer is used in applications.

Introduction 1

A
= ADLINK

This page intentionally left blank.

2 Introduction

Edge Vision Analytics SDK Programming Guide |

2 Developing Elements/Plugins with C

This section begins with a general summary of the GObject-style definition for objects with a focus on the
information required to build one class and functions and concludes with an introduction to the assembly of the
GStreamer constructions to help developers who do not know how to implement custom elements.

2.1 Class Declaration

In GODbject, class declaration is quite different between C++, C#, JAVA, and other object-oriented programming
languages. The GObject system implements its object-oriented based system on C which does not support object-
orientation.

In order to use C syntax to support object-oriented semantics standardized by GObject, first describe the class
metadata and then the instance data belonging to the class, as shown in the following example (see also
adaifiltertemplate.h and adaifiltertemplate.cpp).

________ e typedef sf t AdFilterTemplate AdFilterTemplate;
A typical GObject _AdFilter FilterTemplateCl
_AdFilterTemplatePrivate AdFilterTemplatePr

_AdFilterTemplate
s
!
GstVideoFilter base;
AdFilterTemplatePrivate *priv;

Metadata

I

Instance data _AdFilterTemplateClass

Ir
L

GstVideoFilterClass base_ad_filter_template_class;

The GObject system combines these two struct definitions at execution time. These two struct definitions must
have a typedef declaration with the same name without an underline; this is the format commonly used by GObject
in GStreamer or other libraries. The private structure is defined in _AdFilterTemplatePrivate in .cpp in case of
wrapping the source code.

GOhbject also requires defining the parent class and instance first in each class metadata structure and instance
data structure. This will let GObject know which class declarations to inherit from. In this example,
_AdFilterTemplate and _ADFilterTemplateClass both inherit from the parent classes GstVideoFilter and
GstVideoFilterClass, respectively.

211 Register to GObject

After defining the class content, register the class type for the GObject system.

GType ad filter template get type(void):;

This step allows the GObject system to identify the class by returning GType and casting the result to the right
class at execution time.

Developing Elements/Plugins with C 3

A

= ADLINK

21.2 Casting Macros

#define AD TYPE FILTER TEMPLATE \
(ad filter template get type())

#define AD FILTER TEMPLATE (obj) \
(G_TYPE CHECK INSTANCE CAST ((obj), AD TYPE FILTER TEMPLATE, AdFilterTemplate))

#define AD FILTER TEMPLATE CLASS (klass) \
(G_TYPE CHECK CLASS CAST((klass), AD TYPE FILTER TEMPLATE, AdFilterTemplateClass))

#define AD IS FILTER TEMPLATE (obj) \
(G_TYPE CHECK_INSTANCE TYPE ((obj), AD TYPE FILTER TEMPLATE))

#define AD IS FILTER TEMPLATE CLASS (klass) \
(G_TYPE_CHECK_CLASS_TYPE ((klass), AD TYPE FILTER TEMPLATE))

The above are the required macro definitions for casting the GObject and must be defined between the
G_BEGIN_DECLS and G_END_DECLS tags. It is common with GObject that the inherited functions and members
are called or used.

2.2 Constructors and Deconstructors

The file adaifiltertemplate.cpp implements the ad_filter_template_class_init and ad_filter_template_init constructors.
When the class object memory is allocated, Ginstancelnit() is called to initialize the class, then the constructors. When
a class is going to be destroyed, the deconstructor will first be called. In the GObject, there is no clear connection
between constructor and deconstructor. The GObject separates the deconstructor into dispose and finalize. If the
class references another object, it is required to release the reference of that object in the dispose stage (refer to
gst_object _unref for more details). In the finalize stage, all the allocated memory for this class is released.

2.3 Object Lifecycle

The chart below shows the lifecycle of the GObject class described above. Class initialization is only performed
once when the class is first used in the lifecycle, and each instance of the class is individually initialized and
destroyed in its lifecycle. Once the class is not used, it is permanently destroyed.

lnitialize data of the instance

X

I
I
l Destroy data of the instance
I

4 Developing Elements/Plugins with C

https://gstreamer.freedesktop.org/documentation/gstreamer/gstobject.html?gi-language=c#gst_object_unref

Edge Vision Analytics SDK Programming Guide |

2.4 Class Implementation

In the GObject, you are required to cast the type to the parent and assign the implemented function to perform an
override.

24.1 Casting in class_init

GObjectClass *gobject class;
GstElementClass *gstelement class;
GstVideoFilterClass *gstvideofilter class;

gobject class = (GObjectClass *)klass;
gstvideofilter class = (GstVideoFilterClass *)klass;
gstelement class = (GstElementClass *)klass;

Take ad_filter_template as an example, which has the following inheritance:

ad_filter_template_class_init(AdFilterTemplateClass *klass)
{
GObjectClass *gobject_class;

GstElementClass *gstelement class;
GstVideoFilterClass *gstvideofilter_class;

gobject_class = (GObjectClass *)klass;
gstvideofilter_class = (GstVideoFilterClass *)klass;
gstelement_class = (GstElementClass *)}klass;

2.4.2 Override the Method of the Parent

Casting to the right parent to override the method you are going to use is the way that the GObject system runs.
The class function or virtual function descriptions can be queried by the GStreamer API references. For the
GObjectClass in ad_filter_template_class_init, there are four main functions that must be implemented for the class:

1. _set_property
2. _get_property
3. _dispose
4. finalize

parent method overriding

gobject class->set property = ad filter template set property;
gobject class->get property = ad filter template get property;
gobject class->dispose = ad filter template dispose;

gobject class->finalize = ad filter template finalize;

2.4.3 Implement Object Properties

The GObject implements a get/set mechanism for object properties. This mechanism allows the user to read
through GObject's g_object_get_property or write data with g_object_set_property by knowing the name of the
object property. The class supports this mechanism by registering each class property through
g_object_class_install_property and overriding the _set_property and _get_property functions, For example:

get/set property install

g_object class_install property(gobject class, PROP_FILTER TYPE,
g _param spec int ("type", "Type",
"Filter type l.Edge 2.Gray",
0, 1, DEFAULT FILTER TYPE,
(GParamFlags)G PARAM READWRITE)) ;

g_object class_install property(gobject class, PROP_EDGE VALUE,
g param spec_ int ("edge-value", "edge value",
"Threshold value for edge image",
0, 255, DEFAULT EDGE VALUE,
(GParamFlags)G_PARAM_READWRITE));

Developing Elements/Plugins with C 5

A
= ADLINK

2.5 Sink and Source Pad Association
There are two kinds of pads in GStreamer: sink and source.

251 Pad Definition

Define sink or source pad factories under the GStreamer pad template. Be sure to define the name of the pad, the
direction, presence, and capabilities.

static GstStaticPadTemplate sink factory = GST STATIC PAD TEMPLATE (
"sink",
GST PAD SINK,
GST PAD ALWAYS,
GST STATIC CAPS(GST VIDEO CAPS MAKE ("{ BGR }")));

static GstStaticPadTemplate src factory = GST STATIC PAD TEMPLATE (
- ”" S rc " 0 - - -
GST PAD SRC,
GST PAD ALWAYS,
GST STATIC CAPS(GST VIDEO CAPS MAKE ("{ BGR }")));

252 Adding a Pad

Add the factories into the class_init of the GObject class. Once the class has been initialized, the GStreamer
factory is created.
gst element class add pad template (gstelement class,
gst static pad template get (&src_ factory)):;

gst element class add pad template(gstelement class,
gst static pad template get (&sink factory)):

6 Developing Elements/Plugins with C

Edge Vision Analytics SDK Programming Guide |

2.6 Overriding GstVideoFilter transform_frame_ip

The ad_filter template, inherited from GstVideoFilter, is useful for focusing on the video algorithm without
additional GStreamer tasks like negotiation, capability checks, or status checks. This element is focused on
processing frame data, so it is suitable to inherit the parent GstVideoFilter class. To achieve this implementation,
override the virtual method transform_frame_ip.

gstvideofilter class->transform frame ip = GST DEBUG FUNCPTR (
ad filter template transform frame ip);

Inad filter template transform frame ip, GstVideoFilter passes the GstVideoFrame wrapper for
the user to directly access the data related to the frame, unlike other GStreamer elements that pass the buffer
directly. The buffer does not have to be parsed into the generic frame format.

static GstFlowReturn
ad filter template transform frame ip(GstVideoFilter *filter, GstVideoFrame *frame)
{
AdFilterTemplate *sample filter = AD FILTER TEMPLATE (filter);
GstMapInfo info;
Mat output image;
int filter type;
int edge_ threshold;
gst buffer map (frame->buffer, &info, GST MAP READ) ;
ad filter template initialize images(sample filter, frame, info);
AD FILTER TEMPLATE LOCK (sample filter);
filter type = sample filter->priv->filter type;
edge threshold = sample filter->priv->edge value;
AD FILTER TEMPLATE UNLOCK (sample filter);
if (filter type == 0)
{
GST DEBUG ("Calculating edges");
Canny ((*sample filter->priv->cv_image), output image,
edge threshold, 255);
}
else if (filter type == 1)
{
GST DEBUG ("Calculating black&white image");
cvtColor ((*sample filter->priv->cv_image), output image, COLOR BGR2GRAY) ;
}
if (output image.data != NULL)
{
GST DEBUG ("Updating output image");
ad filter template display background(sample filter, output image);
}
gst buffer unmap (frame->buffer, &info) ;
return GST_FLOW_OK;

gst buffer map and gst buffer unmap deal with the mapping tasks from frame data to info. map and
unmap also deals with read/write management to ensure the data is exclusively occupied. In the example, the
processing option filter type decides what the process is going to do: 1 for color to gray; 0 for Canny edge
detection.

After the process is done, ad_filter template display background will copy back to the frame referenced
at the beginning. Then, the video frame buffer is passed downstream.

Developing Elements/Plugins with C 7

A
= ADLINK

2.7 Plugin Registration

GStreamer uses a registration script to wrap elements into the plugin. The plugin is a .so file stored in the operating
system accessed by GStreamer.

gboolean
ad filter template plugin init (GstPlugin *plugin)
{
return gst element register (plugin, PLUGIN NAME, GST RANK NONE,
AD TYPE FILTER TEMPLATE) ;
}

GST_PLUGIN DEFINE (
GST VERSION MAJOR,
GST VERSION MINOCR,
adfiltertemplate,
"ADLINK filter template plugin",
ad filter template plugin init,
PACKAGE VERSION,
GST LICENSE,
GST PACKAGE NAME,
GST PACKAGE ORIGIN)

The plugin's information is stored in config.h included in a .cpp file. Add an element register inside plugin_init, and
provide the required plugin definition.

So far, we have introduced the basic concepts of the GObject structure used in C and the way to implement a basic
element in GStreamer. There are other kinds of the elements described in GStreamer such as the sink element, src
element, and multi-Pad element which are implemented in a similar way. Refer to the Gstreamer API reference for
more information on creating custom GStreamer elements.

8 Developing Elements/Plugins with C

Edge Vision Analytics SDK Programming Guide |

3 Developing Elements/Plugins with Python

Relative to programming in C, it is easier to develop elements/plugins in Python. The following uses the
classifier_sample element as an example of programming elements/plugins in Python.

3.1 Import Glib Module

GStreamer is built on Glib and GObject which are compatible across platforms and programming languages.
However, the following modules must still be included.

from gi.repository import Gst, GObject

Developing a GStreamer application in Python requires a Gst version and initialization before using the Gst
function because the GStreamer Python element loader will handle this step.

import gi

gi.require version('Gst', '1.0")
from gi.repository import Gst, GObject
Gst.init ([])

3.2 Class Declaration
Defines the class and inherits a subclass of Gst.Element.

class ClassifierSamplePy (Gst.Element) :

3.3 Class Implementation

3.3.1 Initialize Class Metadata

class ClassifierSamplePy (Gst.Element) :

MODIFIED - Gstreamer plugin name

GST PLUGIN NAME = 'classifier sample'
__gstmetadata = ("Name",

"Transform",

"Description",

"Author")
~_gsttemplates = (Gst.PadTemplate.new("src",

Gst.PadDirection.SRC,
Gst.PadPresence.ALWAYS,
Gst.Caps.new _any()),
Gst.PadTemplate.new ("sink",
Gst.PadDirection.SINK,
Gst.PadPresence.ALWAYS,
Gst.Caps.new any()))

_sinkpadtemplate = gsttemplates

_[1]
_srcpadtemplate = gsttemplates [0]

MODIFIED - Gstreamer plugin properties

__gproperties = {
"class-num": (int, # type
"class-num", # nick
"Class number", # blurb

1, # min

65536, # max

1001, # default
GObject.ParamFlags.READWRITE # flags

Developing Elements/Plugins with Python 9

A

A ADLINK

3.3.2 Initialize Class Instance

Initialize properties before base class initialization.

class ClassifierSamplePy (Gst.Element) :

def init (self):
self.class num = 1001
self.batch num = 1
self.label = ""
self.labels = None

super (ClassifierSamplePy, self). init ()

3.3.3 Sink and src Pad Association
New sink and src pads from template, including register callbacks for events, queries, or dataflow on the pads.

class ClassifierSamplePy (Gst.Element) :

def init (self):

self.sinkpad = Gst.Pad.new from template(self. sinkpadtemplate, 'sink')
self.sinkpad.set chain function full (self.chainfunc, None)
self.sinkpad.set event function full (self.eventfunc, None)

self.add pad(self.sinkpad)
self.srcpad = Gst.Pad.new from template(self. srcpadtemplate, 'src')
self.add pad(self.srcpad)

3.34 Override set and get Property Function

Override property function to implement get and set property features.

class ClassifierSamplePy (Gst.Element) :

def init (self):

def do get property(self, prop: GObject.GParamSpec) :
Implement your get property

def do set property(self, prop: GObject.GParamSpec, value):
Implement your get property

3.35 Implement Chain Function

When a sink pad pushes the buffer, the pad will call the chainfunc callback function. Implement logical frame
operations in this function and push the buffer into the src pad to pass the buffer into the next element.

class ClassifierSamplePy (Gst.Element) :

def chainfunc(self, pad: Gst.Pad, parent, buffer: Gst.Buffer) -> Gst.FlowReturn:
Implement your frame operate logical here

return self.srcpad.push (buffer)

10 Developing Elements/Plugins with Python

Edge Vision Analytics SDK Programming Guide |

3.4 Register Python Element

You need to register the Python element after implementing the element class, and then GStreamer can scan the
element.

class ClassifierSamplePy (Gst.Element) :

GObject.type register(ClassifierSamplePy)
__gstelementfactory = (ClassifierSamplePy.GST PLUGIN NAME,
Gst.Rank.NONE, ClassifierSamplePy)

The Python element must define the gstelementfactory variable because the GStreamer Python loader
will scan all Python modules in the plugin path and check whether this module defines gstelementfactory .

Modules that do not implement the variable can be skipped.

3.5 Install a Python Element

Usually, GStreamer scans plugins under the GST_PLUGIN_PATH environment variable. However, Python
elements must be installed in the "python" folder under GST_PLUGIN_PATH. In the example below, the
GST_PLUGIN_PATH is /plugins, and there is a Python element named classifier_sample.py.

plugins
libadfiltertemplate.so

libpylonsrc.so
python

t:: classifier sample.py

Developing Elements/Plugins with Python 11

A
= ADLINK

This page intentionally left blank.

12

Developing Elements/Plugins with Python

Edge Vision Analytics SDK Programming Guide |

4 Python Sample to Interpret Inference Result as a Yolov3 Box
Detection
A deep learning inference application will infer input data with specific deep learning models. Each deep learning

model will have a different inference result format. The application needs to change code to interpret inference results
after changing models. This causes the inference application to have a high dependency on the deep learning model.

Other Solutions EVA SDK Solution

Data Data

I Inference Application
(" * Inference)
N\

EVA Inference plugins

_ >
Infe_ren_ce ‘l! Translation
Applications (

EVA Translator plugins
or

User customized plugins

o /

L v

Human-readable inference result Human-readable inference result

The EVA SDK separates the inference application into two parts: inference and translation. The translation part is
to translate the raw inference result acquired from an inference part to a more human-readable format. Because
the translation plugins require the raw inference result from EVA inference plugins, the translator plugin must follow
the inference plugin. Users can easily swap between inference parts, such as OpenVINO or TensorRT, without
needing to modify the translation part, or swap the translation part according to the deep learning model without
needing to modify the inference part.

The EVA SDK inference plugins support most inference models, so users can focus on developing their own
translation part for translating the inference results into human-readable format.

The following section includes Python sample code on how to integrate translation code with the EVA SDK
inference application.

4.1 Python Sample Code

Normally, a GStreamer element will send only a single buffer with image data. However, the inference element will
send a buffer list with the first index of the list being image data, and the second index being the inference data.
Therefore, the translation element needs to receive the buffer list to extract both image and inference data.

class AdYoloPy(Gst.Element) :

def init (self):

self.sinkpad.set chain function full (self.chainfunc, None)

self.sinkpad.set chain list function full(self.chainlistfunc, None).

def chainlistfunc(self, pad: Gst.Pad, parent, buff list: Gst.BufferList) ->
Gst.FlowReturn:

Python Sample to Interpret Inference Result as a Yolov3 Box Detection 13

A

A ADLINK

YoloV3 is a special deep learning architecture having multiple output blobs with different target box sizes. The code
needs to separate inference data into multiple buffers depending on the output blob size. By default, YoloV3 will
have three output blobs and YoloV3-Tiny will have two output blobs. The buffer size will change according to the
batch number, class number, and blob output size. The YoloV3 author’s pre-train model has 80 class numbers and
the output blob’s sizes are 26x26, 52x52, and 13x13 (width x height). The following code is to calculate the size of
each blob.

class AdYoloPy (Gst.Element) :

def chainlistfunc(self, pad: Gst.Pad, parent, buff list: Gst.BufferList) ->
Gst.FlowReturn:
class_coord dim = (self.class num + 5) * 3
out sizes = list (map(lambda bs: self.batch num * class coord dim * bs[0] * bs[1l],
self.blob size))

The following code will get the size of each blob, extract the second index of the buffer list and convert it to a big
buffer. The EVA SDK provides an API to extract image data from a buffer list.

class AdYoloPy(Gst.Element) :

def chainlistfunc(self, pad: Gst.Pad, parent, buff list: Gst.BufferList) ->
Gst.FlowReturn:

with gst helper.get inference data to numpy (buff list, (sum(out sizes))) as data:

Next, separate the big buffer into multiple buffers and reshape each buffer to the corresponding blob dimension.
The blob dimension is Batch x Class (including the coordinate information) x Blob width x Blob height.

with gst helper.get inference data to numpy (buff list, (sum(out sizes))) as data:
offset = 0
for idx, s in enumerate (out sizes):
blob = data[offset:offset+s].reshape(self.batch num, class coord dim,
*self.blob size[idx])
mask = self.mask[idx]
anchor = list (map(lambda m: self.anchor[m], mask))
_boxs = parse yolo output blob(blob, self.input width, self.input height, mask, anchor,
threshold=self.threshold)
boxs += boxs
offset += s

After getting the blob buffer, interpret blobs as boxes. Parsing the YoloV3 format buffer is out of the scope of this
document. For more details, refer to
https://github.com/pjreddie/darknet/blob/f6d861736038da22c9eb0739dca84003c5a5e275/src/yolo layer.c#L275

Below is an example of parsing code.

def parse yolo output blob(blob, iw, ih, mask, anchor, threshold=0.8):

14 Python Sample to Interpret Inference Result as a Yolov3 Box Detection

https://github.com/pjreddie/darknet/blob/f6d861736038da22c9eb0739dca84003c5a5e275/src/yolo_layer.c#L275

Edge Vision Analytics SDK Programming Guide |

4.2 Draw Boxes in an Image

After obtaining the boxes, the program needs to draw the boxes in image data, so it will extract the first index of the
buffer list. The EVA SDK provides two APIs to get writable buffers from the buffer list and convert the buffers to
NumPy like data. The data then can be used like an image in the OpenCV API.

class AdYoloPy (Gst.Element) :

def chainlistfunc(self, pad: Gst.Pad, parent, buff list: Gst.BufferList) ->
Gst.FlowReturn:

buf = gst helper. gst get buffer list writable buffer (buff list, 0)
img = gst cv helper.pad and buffer to numpy(pad, buf, ro=False)

Draw yolo results

draw boxs (img, boxs, self.labels)

Finally, release inference data and send image data to the next element.

class AdYoloPy(Gst.Element) :

def chainlistfunc(self, pad: Gst.Pad, parent, buff list: Gst.BufferList) ->
Gst.FlowReturn:

buff list.remove(l, 1)

return self.srcpad.push(buff list.get (0))

4.3 Custom Translatation of Code
The custom translation of code requires the following steps.

1. Define your own properties. The properties of the sample code were used for the YoloV3 model. Each model
has its own required information.

2. Understand how to exact inference data, as YoloV3 has multiple output blobs, and divide a big buffer into
multiple buffers. Models with only one output blob are easier to extract image data from.

3. Implement code to interpret the blob buffer into human-readable data such as classification, detection box, or
segmentation. Each model has its own output format.

4. After changing the parts above, users can integrate their own translation application with the EVA inference
application.

4.4 Python Application Example

After finishing the designed plugin, we are going to describe the python examples to show two parts: (1) Pure
python application and (2) use the python plugin in the python application example. After you had finished the
plugin, you can simply create a python application to use the python plugin to integrate the python program inside.
Refer to 6.3 Python Method on page 25 for more details.

Python Sample to Interpret Inference Result as a Yolov3 Box Detection 15

A
= ADLINK

This page intentionally left blank.

16

Python Sample to Interpret Inference Result as a Yolov3 Box Detection

Edge Vision Analytics SDK Programming Guide |

5 How to Use ADLINK Metadata

5.1 ADLINK Metadata Architecture

ADLINK provides structured metadata within the GStreamer pipeline, storing information about the frame, device,
and inference results as shown below.

DeviceInfoData

mac_address

ip_address

DetectionBoxResult

obj_id
obj_label
id

dass_label

Batch

protocol

DeviceInfoDataVector

JR080a00ARHa:

VideoFrameDatavector VideoFrameData

probability

- 5
s|e]= i

im| ClassificationResult

SegmentResult

JRA0RE

:
3
5

is_compressed

ClassificationResultVector

RowSegmentResult
DetectionBoxResultVector

RowSegmentResultVector

How to Use ADLINK Metadata 17

A

= ADLINK

There are six different structures:
e ADBatch
e DevicelnfoData

e VideoFrameData

e DetectionBoxResult

e ClassificationResult

e SegmentResult
Each structure has its own items, as described in the following sections.

51.1 AdBatch Structure

Field Name Type Description

DevicelnfoDataVector | vector<DevicelnfoData> The device information of each frame in this batch.

VideoFrameDataVector | vector<VideoFrameData> | Frames in this batch.

5.1.2 DevicelnfoData Structure

Field Name Type Description

stream_id gchar* | Stream publisher ID

mac_address |gchar* | Host address

ip_address gchar* | Host machine IP Address
port gint32 | Connection port
uri gchar* | Video Interface URI (rtsp://xx/h264)

manufacturer | gchar* | Vision Device manufacturer

model gchar* | Vision Device model

serial gchar* | Vision Device serial identifier

fw_version gchar* | Vision Device firmware version

dev_id gchar* | Vision Device host interface (e.g. /dev/videoO or /dev/ttyUSBO)
status gchar* | DeviceStatus enum (OASYS defined)

kind gchar* | Vision device kind enum (OASYS defined)

protocol gchar* | ProtocolKind enum describing how the device communicates

18 How to Use ADLINK Metadata

Edge Vision Analytics SDK Programming Guide |

51.3 VideoFrameData Structure

Field Name Type Description

stream_id gchar* Stream publisher ID

frame_id guint32 Frame sample ID

timestamp gint64 Time of image capture event

width guint32 Frame width

height guint32 Frame height

depth guint32 Bit per pixel

channels guint32 Channels

device_idx guint32 Index of the DevicelnfoDataVec of this Batch
is_compress gboolean Compression used for video frame
ClassificationResultVector | vector<ClassificationResult> | The inference result of classification
DetectionBoxResultVector | vector<DetectionBoxResult> | The inference result of detection boxes

5.14 ClassificationResult Structure

Field Name | Type Description

index gint32 Classification index

output gchar* | Output type - used when classification model has multiple types of labels for
each output index

label gchar* | Classification label name

probability | gfloat32 | Network confidence

5.1.5 DetectionBoxResult Structure

Field Name | Type Description

obj_id gint32 Detected object’s id
obj_label gchar* | Detected object’s proper name
class_id gint32 Detected object’s classification type as raw id

class_label |gchar* [Detected object’s classification as proper name

x1 gfloat32 | Top Left X Coordinate (% from 0,0). (frame base, not batch base)
yl gfloat32 | Top Left Y Coordinate (% from 0,0). (frame base, not batch base)
X2 gfloat32 | Bottom Right X Coordinate (% from 0,0). (frame base, not batch base)
y2 gfloat32 | Bottom Right Y Coordinate (% from 0,0). (frame base, not batch base)

probability | gfloat32 | Network confidence

meta gchar* | Buffer for extra inference metadata

How to Use ADLINK Metadata 19

A

= ADLINK

5.1.6 SegmentResult Structure
Field Name | Type Description
label_id gint32 Label id

label gchar* | Label string
label_id gint32 Label id

5.2 Using ADLINK Metadata

The Gstreamer element stream provides a simple way to get ADLINK metadata with
gst buffer get ad batch meta

GstAdBatchMeta *adbatchmeta = gst buffer get ad batch meta (buf) ;

NOTE: In this release version, the utility gst buffer get ad batch meta (GstBuffer* buffer) is not yet
available for use. In samples, ex_getAdMetadata.cpp, line 27 illustrates how to create a
gst buffer get ad batch meta (GstBuffer* buffer) forassessing GstAdBatchMeta.

Once you get the ADLINK metadata pointer from a buffer, you can directly get/set the content of the data inside.
Set Metadata

VideoFrameData video info;

video info.stream id = "from-dumper-b5d84236-a23d-49fc-a574-e0cd944490bb";
video info.frame id = frame counter;

video info.timestamp = GetDigitUTCTime () ;

video info.width = 800;

video info.height = 600;

video info.depth = 8;

video info.channels =
video info.device idx 0;

video info.is compress = false;
adbatchmeta->batch.frames.push back(video info) ;

3¢

Get Metadata

frame vec size = meta->batch.frames.size();
if (adbatchmeta->batch.frames.size () > 0)
classification n = meta->batch.frames[0].class results.size();

If the AdBatch metadata frame information exists, information like the frame vector size or the number of the
classification results can be gotten directly.

20 How to Use ADLINK Metadata

Edge Vision Analytics SDK Programming Guide |

6 Integrating the GStreamer Plugin

GStreamer includes the libgstapp plugin containing the appsink and appsrc elements to interact with the
application. appsink is used to allow the application to get access to raw buffer data and appsrc is used to allow
the application to feed buffers to the pipeline. Refer to GStreamer tutorials for more information on how to establish
communication with appsink and appsrc.

Access to appsink and appsrc is through VvideoCapture and VideoWriter from the OpenCV wrapper. We
can directly provide the pipeline with appsink to VideoCapture for retrieving frames, and provide the pipeline
with appsrc to send the frame into the pipeline from the application. This wrapper is much more simple for those
who want to use algorithms that GStreamer does not provide, like motion extraction, video content analytics, or
image saliency calculation.

Refer to the EVA SDK installation path /samples folder for more information on Python and C++ application sample
code, compiling processes described in readme.md, and for how to build the sample code.

6.1 Method 1

To grab the frame from the pipeline with appsink, the constructor provided by VideoCapture requires two
signatures, the pipeline string and the API preference (enum cv::CAP_GSTREAMER). To grab the frame from the
v412src element of the pipeline, provide the pipeline definition to videoCapture as in the following example.

appsink

VideoCapture cap ("v4l2src ! videoscale ! video/x-raw, width=1024, height=768 ! videoconvert
! appsink", CAP_ GSTREAMER) ;

The frame can then be captured via OpenCV.

VideoCapture

Mat frame;

while (true)

{
cap.read (frame) ;
// do your process

}

To send the frame to the pipeline with appsrc, the function provided by the videoWriter requires the pipeline
string, the API preference, and other parameters like fps, frame size, and color flag. The signatures are required for
the pipeline caps filter settings. To send the frame data to the pipeline with appsrc, the pipeline definition must be
provided to VideoWriter, as in the following example.

appsrc

cv::VideoWriter writer;

writer.open ("appsrc ! videoconvert ! video/x-raw, format=BGR, width=640, height=480,
framerate=30/1 ! clockoverlay ! ximagesink sync=false", CAP_GSTREAMER, 0, 30, cv::Size (640,
480), true);

The target pipeline settings include, frame size (640x480), frame rate (30), and color format that fits the OpenCV
default BGR color format. The pipeline then shows the frame in xwindows via the ximagesink element. Feed the
frame into the pipeline by writing it directly, as in the following example.

VideoWriter

writer.write (frame) ;

The example code below shows the combination of the pipeline using appsink and appsrc to read a frame from
the v412 pipeline and resizing the frame to simulate the custom algorithm process, then passing the resulting frame
into the pipeline.

Integrating the GStreamer Plugin 21

A
= ADLINK

Combined Example

#include "opencv2/opencv.hpp"
#include <iostream>

#include <stdio.h>

#include <thread>

#include <chrono>

using namespace cv;

using namespace std;

9. int main (int, char**)

10.{

11. Mat frame;

12.

13. VideoCapture cap("v4l2src ! videoscale ! video/x-raw, width=1024, height=768 !
videoconvert ! appsink", CAP GSTREAMER) ;

14.

15
o~

O ~J oy Ul b WwWN

6

e

18-

19.

20. if (!cap.isOpened())

21. {

22. cerr << "ERROR! Unable to open camera\n";

23. return -1;

24. }

25.

26. cv::VideoWriter writer;

27. writer.open ("appsrc ! videoconvert ! video/x-raw, format=BGR, width=640,

height=480, framerate=30/1 ! clockoverlay ! ximagesink sync=false", CAP_GSTREAMER, 0, 30,
cv::Size (640, 480), true);

28. if (!writer.isOpened())

29. {

30. printf ("=ERR= can't create writer\n");

31. return -1;

32. }

33.

34. //--- GRAB AND WRITE LOOP

35. cout << "Start grabbing" << endl;

36.

37. for (;;)

38. {

39, cap.read (frame) ;

40. if (frame.empty())

41. {

42. cerr << "ERROR! blank frame grabbed\n";
43. break;

44 . }

45. cv::resize (frame, frame, Size (640,480)); // do some image process here
46. writer.write (frame) ;

47.

48. this thread::sleep for(chrono::milliseconds (1000)) ;
49. }

50. return 0;

51. 1}

22 Integrating the GStreamer Plugin

6.2 Method 2

Edge Vision Analytics SDK Programming Guide |

OpenCV provides a convenient way for developers wanting to utilize their own API, algorithm, or unique processing.
Based on the examples in Method 1, another pipeline in the thread can be created to request user padding frame
data to overlay clock information on the top-left of the frame via the GStreamer clock overlay element.

pipeline thread

thread pipethread(establish appsrc appsink pipeline);

The establish appsrc appsink pipeline function builds the pipeline: appsrc ! clockoverlay !

videoconvert ! appsink, shown inthe code fragment below.
establish_appsrc_appsink_pipeline

l.static void establish appsrc appsink pipeline ()

2.4

3. /* init GStreamer */

4. gst _init (NULL, NULL);

5 loop = g main loop new (NULL, FALSE);

6.

7. /* setup pipeline */

8. pipeline = gst pipeline new ("pipeline");

9. appsrc = gst element factory make ("appsrc", "source");

10. clockoverlay = gst element factory make ("clockoverlay", "clockoverlay");
11. conv = gst element factory make ("videoconvert", "conv");

12. appsink = gst element factory make ("appsink", "appsink");

13.

14. /* setup */

15. g _object set (G OBJECT (appsrc),

16. "caps",

17. gst caps new simple("video/x-raw", "format", G TYPE STRING, "BGR",
18. "width", G _TYPE INT, 640, "height", G TYPE INT,
19, 480, "framerate", GST TYPE FRACTION, 30,1,NULL),
20. NULL) ;

21. gst bin add many (GST BIN (pipeline), appsrc, clockoverlay, conv, appsink, NULL);
22. gst element link many (appsrc, clockoverlay, conv, appsink, NULL);

23.

24. /* setup appsrc */

25. g _object set (G _OBJECT (appsrc), "stream-type", 0,

26 "format", GST FORMAT TIME, NULL);

27 g_signal connect (G _OBJECT (appsrc), "need-data",

28. G CALLBACK (cb need data), NULL);

29

30. /* setup appsink */

31 g _object set (G _OBJECT (appsink), "emit-signals", TRUE, NULL);

32. g _signal connect (appsink, "new-sample", G CALLBACK (new sample), NULL);
33.

34. /* play */

35 gst_element set state (pipeline, GST STATE PLAYING) ;

36

37. while (true)

38. {

39 this thread::sleep for(chrono::milliseconds (10)) ;

40. }

41.

42. free appsrc appsink pipeline();

43.}

Refer to the GStreamer tutorials for more information on how to build the pipeline. Here the appsrc and appsink
signal properties connect through the GObject API in line 27 and 32.

Lines 25 and 26 set the stream-type property to push mode. Line 27, hooks the cb _need data callback
function to need-data to wait for the appsrc notification to feed the data and then push it to appsrc.

Integrating the GStreamer Plugin

23

A
A ADLINK

cb_need_data

l.static void cb need data(GstElement *appsrc, guint unused size, gpointer user data)

2.4

3. VA

4. // code omit

5o

6. memcpy ((guchar *)map.data, grabframe.data, gst buffer get size(buffer)):;
7.

8. /A

9. // code omit

10. g _signal emit by name (appsrc, "push-buffer", buffer, &ret);

11 }

Once the function is called back, the data for appsrc's buffer can be padded and then the signal called to push the
data to appsrc.

Similarly, line 31 in establish appsrc appsink pipeline sets the appsink property emit-signals to
ejection mode. Line 32, hooks the new sample callback function to wait for the notification to access the output
frame data sample.

new_sample

l.static GstFlowReturn new sample (GstElement *sink, gpointer *udata)
2.4

3 GstSample *sample;

4.

5o g_signal emit by name (sink, "pull-sample", &sample);

6. if (sample)

7. {

8. /] e

9. // code omit

10. memcpy (processedframe.data, (guchar *)map.data, gst buffer get size(buffer));
11.

12. gst sample unref (sample);

13, return GST FLOW OK;

14. }

15, return GST FLOW ERROR;

16. }

As long as appsink indicates the sample is ready and accessible, the data can be gotten from appsink's buffer.

Relative to Method 1, Method 2 is provided for those who required leverage to GStreamer's elements, like clock
overlay, to process the frame data and then return to the application.

Both Method 1 and Method 2 have introduced effective ways to integrate custom applications with GStreamer. For
more information on the usage of appsrc and appsink, refer to the GStreamer tutorials.

24 Integrating the GStreamer Plugin

Edge Vision Analytics SDK Programming Guide |

6.3 Python Method

This section describes how to integrate python code with EVA with an example showing how to establish a python
application and then involve the python plugin in this application. Refer to Chapter 3 for how to modify the python
plugin of the translator.

6.3.1 Python Application

In pipeline_app.py, first create a thread to generate the pipeline in establish thread pipeline.
1. def establish thread pipeline():

2 print ('Start establish pipeline.')

3 # GStreamer init and declare the pipeline

4. Gst.init (sys.argv)

5 pipeline = Gst.Pipeline () .new("example-pipeline")

6

7 # Start to declare the elements

8 ## element: videotesetsrc

9. src = Gst.ElementFactory.make ("videotestsrc", "src")

10. src.set property ("pattern", 18)

11. ## element: capsfilter

12. filtercaps = Gst.ElementFactory.make ("capsfilter", "filtercaps")

13. filtercaps.set property("caps", Gst.Caps.from string("video/x-raw, format=BGR,
width=640, height=480"))

14. ## element: admetadebuger

15. debuger = Gst.ElementFactory.make ("admetadebuger", "debuger")

16. debuger.set property ("type", 1)

17. debuger.set property ("id", 187)

18. debuger.set property("class", "boy")

19. debuger.set property ("prob", 0.876)

20. debuger.set property ("x1", 0.1)

21. debuger.set property("yl", 0.2)

22. debuger.set property ("x2", 0.3)

23. debuger.set property ("y2", 0.4)

24. ## element: appsink - for console out to verify debuger

25. dumper = Gst.ElementFactory.make ("admetadumper", "dumper")

26. ## element: videoconvert - for console out to verify debuger

27. videoconvert = Gst.ElementFactory.make ("videoconvert", "videoconvert")

28. ## element: appsink

29, sink = Gst.ElementFactory.make ("appsink", "sink")

30. sink.set property('emit-signals', True)

31. sink.connect ('new-sample', new sample, None)

32. ### elements

33. pipeline elements = [src, filtercaps, debuger, dumper, videoconvert, sink]

34.

35. establish pipeline (pipeline, pipeline elements)

36.

37. bus = pipeline.get bus|()

38.

39. # allow bus to emit messages to main thread

40. bus.add signal watch ()

41.

42. # Start pipeline

43, pipeline.set state(Gst.State.PLAYING)

44 .

45. loop = GLib.MainLoop ()

46.

47 . bus.connect ("message", on message, loop)

48.

49. try:

50. print ("Start to run the pipeline.\n")

51. loop.run ()

52. except Exception:

53. traceback.print exc()

54, loop.quit ()

55.

56. # Stop Pipeline

57. pipeline.set state(Gst.State.NULL)

58. del pipeline

Integrating the GStreamer Plugin 25

A
A ADLINK

59. print ('pipeline stopped.\n')

Similar to the example above, follow these steps in creating the pipeline in C/C++:
1. Initialize and declare the pipeline.

This is the essential step while creating the pipeline at the beginning in lines 4 and 5.
2. Create each element used in the pipeline.

For example, create the source element videotestsrc from the factory in line 9.
3. Set values to an element’s properties if necessary.

After creating the elements of the pipeline, some elements require setting a property value. For example, in line
15, admetadebuger (an element used to test adding the metadata) is created and required to set the pseudo
inference data to it. Lines 16 to 23 show how to add those values to the element admetadebuger.

4. Set callback function to element signal if necessary.

Similarly, some elements required setting a callback function, like appsink in lines 28 to 31. appsink
requires setting its notification mode to true if new data exists (line 30). If the data is ready, appsink will call
the application function callback connected in line 31.

5. Add and link the elements.
After all the elements are set, line 35 adds and links each element one by one in establish pipeline.
6. Deal with the pipeline message.

Bus is the layer dealing with the messages between the application and the pipeline. In line 37, we get the bus
from the pipeline and allow the bus to emit messages to the loop thread and then connect the callback function
to the bus for handling the message from the pipeline in line 47.

7. Start the pipeline.

When all the elements and pipeline bus are ready, set the pipeline status to PLAYING (line 43) and start the
loop to run the pipeline (line 51).

8. Stop the pipeline

When the pipeline terminated, it must set the pipeline status to NULL and release all the resources that the
pipeline created in lines 57 and 58.

This example will copy the image data to the queue and save it to a file. The callback function set for appsink will
copy the stream data (image data, in this example) to the queue (line 39). Then the main thread will check the
gueue for data. If image data exists, the image will be saved to the current working directory.

6.3.2 Python Plugin

There is a modified plugin which is used to retrieve the metadata and draw the detection result. In
plugin_sample.py, chainfunc () is used to get images and metadata from the buffer (see Chapter 2 to retrieve
the detection metadata like adyolo_sample.py). The difference in this example is to draw the box information onto
the image in draw_boxes (). Users can replace this function with post-processing or other custom-designed
algorithm.

26 Integrating the GStreamer Plugin

Edge Vision Analytics SDK Programming Guide |

6.3.3 Python Plugin used in Python Application

Once the python plugin file is put in the GST_PLUGIN_PATH, the user can use it directly in a python application.
For example, pipeline_app_call_python_plugin.py is provided to demonstrate the usage of this plugin. This is very
similar to the example pipeline_app.py describe above. The difference between these two examples is that the
input source is changed to filesrc to provide the data, and an additional inference element is added.

The video source is required to separate the video and audio in line 5 and then to encode it with the relative
decoder element like avdec h264 in line 9. Between the demux and decoder is the queue element (line 7) to
gueue the source data waiting for decoding processing.

The videoconvert element (lines 11 and 29) is used to transfer the specific stream into a compatible format.
videoconvert is commonly used in transferring video streams.

1. ## element: filesrc

2. src = Gst.ElementFactory.make ("filesrc", "src")

3. src.set property("location", "./face.mp4")

4. ## element: gtdemux

5. demux = Gst.ElementFactory.make ("gtdemux", "demux")

6. ## element: queue

7. queue = Gst.ElementFactory.make ("queue", "queue")

8. ## element: avdec h265

9. decoder = Gst.ElementFactory.make ("avdec h264", "decoder")

10. ## element: videoconvert

11. convertl = Gst.ElementFactory.make ("videoconvert", "convertl")

12. ## element: adrt

13. adrt = Gst.ElementFactory.make ("adrt", "adrt")

14. adrt.set property("model", "facemask tx2.engine")

15. adrt.set property("scale", 0.0039)

16. adrt.set property("mean", "0 0 0")

17. adrt.set property("device", 0)

18. adrt.set property("batch", 1)

19. ## element: adtranslator

20. translator = Gst.ElementFactory.make ("adtranslator", "translator")
21. translator.set property("topology", "yolov3")

22. translator.set property("dims", "1,24,13,13,1,24,26,26,1,24,52,52")
23. translator.set property("input width", 416)

24. translator.set property("label", "mask.txt")

25. translator.set property("engine-type", 2)

26. ## element: adlink plugin sample

27. drawer = Gst.ElementFactory.make ("adlink plugin sample", "drawer")
28. ## element: videoconvert

29. convert2 = Gst.ElementFactory.make ("videoconvert", "convert2")

30. ## element: ximagesink

31. sink = Gst.ElementFactory.make ("ximagesink", "sink")

32.

33. ### elements

34. pipeline elements = [src, demux, queue, decoder, convertl, adrt, translator,

drawer, convert2, sink]

adrt is the NVidia inference element to let the user load the optimized NVidia TensorRT model. Properties such
as model, scale, mean, device, and batch (lines 14 to 18) can be found in the user’'s manual. These properties
are required to be set while loading the model facemask tx2.engine. (The model can be changed and have
different properties depending on the model architecture.)

adtranslator is the translator element to decode the inference output blob into metadata. This element is
designed to interpret the blob to human-readable data based on the model output format. Properties such as
topology, dims, input width, label, and engine-type can be found in user’'s manual. Different models
require different properties, like adrt.

In line 27, the generated plugin is used. Once the python plugin is set, we can directly use it as the other default
element does. Simply create it and set its property if required. Then add and link the pipeline elements one after
another. There is no difference between this custom python element and other elements.

The consuming sink element here is ximagesink (line 31) used in Linux based operating systems. Different
operating systems use different sink elements like Windows might use d3dvideosink or glimagesink.

Integrating the GStreamer Plugin 27

A

= ADLINK

One thing to note about the element gtdemux in line 5, this element requires dynamic linking the pad to the next
element. Use the connect element to set the dynamic link callback function (line 8 below). Once the pipeline starts
to run, the gtdemux element will set the video pad to its next element.

1. def link element (pipeline, pipeline elements) :

2. ## Link element one by one.

3. for 1 in range(len(pipeline elements) - 1):

4. if pipeline elements[i].name != "demux":

5. pipeline elements[i].link(pipeline elements[i + 1])
6. else:

7 o if i+l < len(pipeline elements) - 1:

8

. pipeline elements[i].connect ("pad-added", demuxer dynamic callback,
pipeline elements[i+1])

Other steps are the same as the pipeline_app.py example. There is another example commented out that uses
v41l2src (use v412src on Ubuntu, replace with ksvideosrc on Windows.) in

pipeline_app_call_python_plugin.py.

28 Integrating the GStreamer Plugin

Edge Vision Analytics SDK Programming Guide |

Safety Instructions

Read and follow all instructions marked on the product and in the documentation before you operate your system.
Retain all safety and operating instructions for future use.

Please read these safety instructions carefully.

Please keep this User's Manual for later reference.

Read the specifications section of this manual for detailed information on the operating environment of this
equipment.

When installing/mounting or uninstalling/removing equipment, turn off the power and unplug any power
cords/cables.

To avoid electrical shock and/or damage to equipment;

Keep equipment away from water or liquid sources.

Keep equipment away from high heat or high humidity.

Keep equipment properly ventilated (do not block or cover ventilation openings).

Make sure to use recommended voltage and power source settings.

Always install and operate equipment near an easily accessible electrical socket-outlet.
Secure the power cord (do not place any object on/over the power cord).

Only install/attach and operate equipment on stable surfaces and/or recommended mountings.

If the equipment will not be used for long periods of time, turn off and unplug the equipment from its
power source.

Never attempt to fix the equipment. Equipment should only be serviced by qualified personnel.

Safety Instructions 29

A
= ADLINK

Getting Service

Ask an Expert: http://askanexpert.adlinktech.com

ADLINK Technology, Inc.

Address:

Tel:
Fax:
Email:

9F, N0.166 Jian Yi Road, Zhonghe District
New Taipei City 235, Taiwan
+886-2-8226-5877

+886-2-8226-5717
service@adlinktech.com

Ampro ADLINK Technology, Inc.

Address:
Tel:

Toll Free:
Fax:
Email:

5215 Hellyer Avenue, #110, San Jose, CA 95138, USA
+1-408-360-0200

+1-800-966-5200 (USA only)

+1-408-360-0222

info@adlinktech.com

ADLINK Technology (China) Co., Ltd.

Address:

Tel:
Fax:
Email:

300 Fang Chun Rd., Zhangjiang Hi-Tech Park, Pudong New Area
Shanghai, 201203 China

+86-21-5132-8988

+86-21-5132-3588

market@adlinktech.com

ADLINK Technology GmbH

Address:

Tel:
Fax:
Email:

Hans-Thoma-Stralle 11
D-68163 Mannheim, Germany
+49-621-43214-0

+49-621 43214-30
germany@adlinktech.com

Please visit the Contact page at www.adlinktech.com for information on how to contact the ADLINK regional office

nearest you.

30

Getting Service

http://askanexpert.adlinktech.com/
http://www.adlinktech.com/

	Edge Vision Analytics SDK Programming Guide
	Preface
	Table of Contents
	1 Introduction
	2 Developing Elements/Plugins with C
	2.1 Class Declaration
	2.1.1 Register to GObject
	2.1.2 Casting Macros

	2.2 Constructors and Deconstructors
	2.3 Object Lifecycle
	2.4 Class Implementation
	2.4.1 Casting in class_init
	2.4.2 Override the Method of the Parent
	2.4.3 Implement Object Properties

	2.5 Sink and Source Pad Association
	2.5.1 Pad Definition
	2.5.2 Adding a Pad

	2.6 Overriding GstVideoFilter transform_frame_ip
	2.7 Plugin Registration

	3 Developing Elements/Plugins with Python
	3.1 Import Glib Module
	3.2 Class Declaration
	3.3 Class Implementation
	3.3.1 Initialize Class Metadata
	3.3.2 Initialize Class Instance
	3.3.3 Sink and src Pad Association
	3.3.4 Override set and get Property Function
	3.3.5 Implement Chain Function

	3.4 Register Python Element
	3.5 Install a Python Element

	4 Python Sample to Interpret Inference Result as a Yolov3 Box Detection
	4.1 Python Sample Code
	4.2 Draw Boxes in an Image
	4.3 Custom Translatation of Code
	4.4 Python Application Example

	5 How to Use ADLINK Metadata
	5.1 ADLINK Metadata Architecture
	5.1.1 AdBatch Structure
	5.1.2 DeviceInfoData Structure
	5.1.3 VideoFrameData Structure
	5.1.4 ClassificationResult Structure
	5.1.5 DetectionBoxResult Structure
	5.1.6 SegmentResult Structure

	5.2 Using ADLINK Metadata

	6 Integrating the GStreamer Plugin
	6.1 Method 1
	6.2 Method 2
	6.3 Python Method
	6.3.1 Python Application
	6.3.2 Python Plugin
	6.3.3 Python Plugin used in Python Application

	Safety Instructions
	Getting Service

