### Step 1 ### ### Download googlenet caffe model $ cd /home/adlink/Downloads/model $ wget http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel $ wget https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_googlenet/deploy.prototxt ### Step 2 ### ### Caffemodel contain two files : prototxt file and caffemodel file. ### To inference we normally require the deploy.prototxt file. ### When convert Caffe model, we need to input the output layer name. ### In the above link, the input layer is "Input" and the output layer is "prob" ### The conversion takes about 1 minutes. $ cd /home/adlink/Downloads $ /usr/src/tensorrt/bin/trtexec --model=/home/adlink/Downloads/model/bvlc_googlenet.caffemodel --deploy=/home/adlink/Downloads/model/deploy.prototxt --output=prob --workspace=3000 --maxBatch=4 --verbose --saveEngine=/home/adlink/Downloads/model/googlenet.engine ### Step 3 ### ### Test by EVA $ gst-launch-1.0 pylonsrc camera=0 fps=20 ! videoconvert ! adrt model=/home/adlink/Downloads/model/googlenet.engine batch=1 ! adtrans_classifier label=/home/adlink/Desktop/EVA_IDE/model/googlenet-v2_RT_labels.txt ! admetadrawer ! videoconvert ! fpsdisplaysink video-sink=xvimagesink text-overlay=true